Search results
Results From The WOW.Com Content Network
A cubic equation with real coefficients can be solved geometrically using compass, straightedge, and an angle trisector if and only if it has three real roots. [30]: Thm. 1 A cubic equation can be solved by compass-and-straightedge construction (without trisector) if and only if it has a rational root.
Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.
A cubic function with real coefficients has either one or three real roots (which may not be distinct); [1] all odd-degree polynomials with real coefficients have at least one real root. The graph of a cubic function always has a single inflection point. It may have two critical points, a local minimum and a local maximum. Otherwise, a cubic ...
In mathematics, an Abel equation of the first kind, named after Niels Henrik Abel, is any ordinary differential equation that is cubic in the unknown function. In other words, it is an equation of the form
Cubic equations, which are polynomial equations of the third degree (meaning the highest power of the unknown is 3) can always be solved for their three solutions in terms of cube roots and square roots (although simpler expressions only in terms of square roots exist for all three solutions, if at least one of them is a rational number).
If the polynomial is irreducible and its coefficients are rational numbers (or belong to a number field), then the discriminant is a square of a rational number (or a number from the number field) if and only if the Galois group of the cubic equation is the cyclic group of order three.
Research, including a 2014 meta-analysis of studies involving more than 1.2 million children, found no association between vaccines and autism.
A counterexample by Ernst S. Selmer shows that the Hasse–Minkowski theorem cannot be extended to forms of degree 3: The cubic equation 3x 3 + 4y 3 + 5z 3 = 0 has a solution in real numbers, and in all p-adic fields, but it has no nontrivial solution in which x, y, and z are all rational numbers. [1]