Search results
Results From The WOW.Com Content Network
For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1. For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. At a given instant a small ...
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
where is osmotic pressure, i is the dimensionless van 't Hoff index, c is the molar concentration of solute, R is the ideal gas constant, and T is the absolute temperature (usually in kelvins). This formula applies when the solute concentration is sufficiently low that the solution can be treated as an ideal solution.
The enthalpy of reaction is then found from the van 't Hoff equation as = . A closely related technique is the use of an electroanalytical voltaic cell , which can be used to measure the Gibbs energy for certain reactions as a function of temperature, yielding K e q ( T ) {\displaystyle K_{\mathrm {eq} }(T)} and thereby Δ rxn H ⊖ ...
Here K f is the cryoscopic constant (equal to 1.86 °C kg/mol for the freezing point of water), i is the van 't Hoff factor, and m the molality (in mol/kg). This predicts the melting of ice by road salt. In the liquid solution, the solvent is diluted by the addition of a solute, so that fewer molecules are available to freeze.
In 1884, Jacobus van 't Hoff proposed the Van 't Hoff equation describing the temperature dependence of the equilibrium constant for a reversible reaction: = where ΔU is the change in internal energy, K is the equilibrium constant of the reaction, R is the universal gas constant, and T is thermodynamic temperature.
where is the chemical potential of the pure solvent and is the chemical potential of the solvent in a solution, M A is its molar mass, x A its mole fraction, R the gas constant and T the temperature in Kelvin. [1] The latter osmotic coefficient is sometimes called the rational osmotic coefficient. The values for the two definitions are ...
Boiling-point elevation is the phenomenon whereby the boiling point of a liquid (a solvent) will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent. This happens whenever a non-volatile solute, such as a salt, is added to a pure solvent, such as water.