Search results
Results From The WOW.Com Content Network
In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different. The fluid can even exhibit time-dependent viscosity. Therefore, a constant coefficient of viscosity cannot be defined. Although the concept of viscosity is commonly used in fluid mechanics to characterize the shear properties of a fluid, it can be ...
Pages in category "Non-Newtonian fluids" The following 55 pages are in this category, out of 55 total. This list may not reflect recent changes. ...
If a fluid does not obey this relation, it is termed a non-Newtonian fluid, of which there are several types. Non-Newtonian fluids can be either plastic, Bingham plastic, pseudoplastic, dilatant, thixotropic, rheopectic, viscoelastic. In some applications, another rough broad division among fluids is made: ideal and non-ideal fluids.
Such a shear thickening fluid, also known by the initialism STF, is an example of a non-Newtonian fluid. This behaviour is usually not observed in pure materials, but can occur in suspensions. A dilatant is a non-Newtonian fluid where the shear viscosity increases with applied shear stress.
Classification of fluids with shear stress as a function of shear rate: Pseudoplastic, Bingham plastic and Bingham pseudoplastic all show reduction in apparent viscosity with increasing shear rate. In rheology, shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain.
Let’s talk science: A non-Newtonian fluid is defined as a liquid that does not follow Newton’s law of viscosity. Ultimately, a non-Newtonian fluid will change under force to be either more ...
Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation. Below is a structured list of topics in fluid dynamics.
However, non-Newtonian fluids are relatively common and include oobleck (which becomes stiffer when vigorously sheared) and non-drip paint (which becomes thinner when sheared). Other examples include many polymer solutions (which exhibit the Weissenberg effect ), molten polymers, many solid suspensions, blood, and most highly viscous fluids.