When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    At any given temperature, there is a frequency f max at which the power emitted is a maximum. Wien's displacement law, and the fact that the frequency is inversely proportional to the wavelength, indicates that the peak frequency f max is proportional to the absolute temperature T of the black body. The photosphere of the sun, at a temperature ...

  3. Temperature - Wikipedia

    en.wikipedia.org/wiki/Temperature

    According to energy conservation and energy being a state function that does not change over a full cycle, the work from a heat engine over a full cycle is equal to the net heat, i.e. the sum of the heat put into the system at high temperature, q H > 0, and the waste heat given off at the low temperature, q C < 0.

  4. Antenna gain-to-noise-temperature - Wikipedia

    en.wikipedia.org/wiki/Antenna_gain-to-noise...

    Antenna gain-to-noise-temperature (G/T) is a figure of merit in the characterization of antenna performance, where G is the antenna gain in decibels at the receive frequency, and T is the equivalent noise temperature of the receiving system in kelvins.

  5. Noise temperature - Wikipedia

    en.wikipedia.org/wiki/Noise_temperature

    For instance, assume an amplifier has a noise temperature 870 K and thus a noise figure of 6 dB. If that amplifier is used to amplify a source having a noise temperature of about room temperature (290 K), as many sources do, then the insertion of that amplifier would reduce the SNR of a signal by 6 dB.

  6. Tropospheric propagation - Wikipedia

    en.wikipedia.org/wiki/Tropospheric_propagation

    At sunset the upper air cools, as does the surface temperature, but at different rates. This produces a boundary or temperature gradient, which allows an inversion level to form – a similar effect occurs at sunrise. The inversion is capable of allowing very high frequency (VHF) and UHF signal propagation well beyond the normal radio horizon ...

  7. Radio propagation - Wikipedia

    en.wikipedia.org/wiki/Radio_propagation

    Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. [1]: 26‑1 As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. [2]

  8. Distributed temperature sensing - Wikipedia

    en.wikipedia.org/wiki/Distributed_temperature...

    Low frequency vibrations (10–30 GHz) cause Brillouin scattering. Energy is exchanged between the light travelling through the fibre and the material itself and cause a frequency shift in the incident light. This frequency shift can then be used to measure temperature changes along the fibre. [1]

  9. Thermal fluctuations - Wikipedia

    en.wikipedia.org/wiki/Thermal_fluctuations

    Thermal fluctuations generally affect all the degrees of freedom of a system: There can be random vibrations , random rotations , random electronic excitations, and so forth. Thermodynamic variables, such as pressure, temperature, or entropy, likewise undergo thermal fluctuations. For example, for a system that has an equilibrium pressure, the ...