When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rational normal curve - Wikipedia

    en.wikipedia.org/wiki/Rational_normal_curve

    In mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space P n. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z 0 Z 2 = Z 2 1, and for n = 3 it is the twisted cubic.

  3. List of curves - Wikipedia

    en.wikipedia.org/wiki/List_of_curves

    This is a list of Wikipedia articles about curves used in different fields: ... Rational curves are subdivided according to the degree of the polynomial. Degree 1

  4. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...

  5. Faltings's theorem - Wikipedia

    en.wikipedia.org/wiki/Faltings's_theorem

    Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell , [ 1 ] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings . [ 2 ]

  6. Glossary of arithmetic and diophantine geometry - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_arithmetic_and...

    The Birch and Swinnerton-Dyer conjecture on elliptic curves postulates a connection between the rank of an elliptic curve and the order of pole of its Hasse–Weil L-function. It has been an important landmark in Diophantine geometry since the mid-1960s, with results such as the Coates–Wiles theorem , Gross–Zagier theorem and Kolyvagin's ...

  7. Lüroth's theorem - Wikipedia

    en.wikipedia.org/wiki/Lüroth's_theorem

    The proof of Lüroth's theorem can be derived easily from the theory of rational curves, using the geometric genus. [2] This method is non-elementary, but several short proofs using only the basics of field theory have long been known, mainly using the concept of transcendence degree. [3]

  8. Uchu Sentai Kyuranger - Wikipedia

    en.wikipedia.org/wiki/Uchu_Sentai_Kyuranger

    Kyuranger is considered the fifth space-themed series [a] whose primary motifs are constellations and Greco-Roman mythology, and it is also the first Super Sentai series to introduce nine regular members in the beginning instead of five or fewer like previous installments. The team later gains three additional members, increasing the number to ...

  9. du Val singularity - Wikipedia

    en.wikipedia.org/wiki/Du_Val_singularity

    In algebraic geometry, a Du Val singularity, also called simple surface singularity, Kleinian singularity, or rational double point, is an isolated singularity of a complex surface which is modeled on a double branched cover of the plane, with minimal resolution obtained by replacing the singular point with a tree of smooth rational curves, with intersection pattern dual to a Dynkin diagram of ...