When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    Photosynthesis is the main means by which plants, algae and many bacteria produce organic compounds and oxygen from carbon dioxide and water (green arrow). An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds , which can be used by other organisms .

  3. Photoautotroph - Wikipedia

    en.wikipedia.org/wiki/Photoautotroph

    Anoxygenic photosynthetic bacteria use PSI- and PSII-like photosystems, which are pigment protein complexes for capturing light. [5] Both of these photosystems use bacteriochlorophyll . There are multiple hypotheses for how oxygenic photosynthesis evolved.

  4. Bacterial cellular morphologies - Wikipedia

    en.wikipedia.org/wiki/Bacterial_cellular...

    Spiral bacteria are another major bacterial cell morphology. [2] [30] [31] [32] Spiral bacteria can be sub-classified as spirilla, spirochetes, or vibrios based on the number of twists per cell, cell thickness, cell flexibility, and motility. [33] Bacteria are known to evolve specific traits to survive in their ideal environment. [34]

  5. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    Eventually, autotrophic and heterotrophic cells were engulfed by these early heterotrophs and formed a symbiotic relationship. [27] The endosymbiosis of autotrophic cells is suggested to have evolved into the chloroplasts while the endosymbiosis of smaller heterotrophs developed into the mitochondria , allowing the differentiation of tissues ...

  6. Chemotroph - Wikipedia

    en.wikipedia.org/wiki/Chemotroph

    Most chemoautotrophs are prokaryotic extremophiles, bacteria, or archaea that live in otherwise hostile environments (such as deep sea vents) and are the primary producers in such ecosystems. Chemoautotrophs generally fall into several groups: methanogens, sulfur oxidizers and reducers, nitrifiers, anammox bacteria, and thermoacidophiles.

  7. Lithoautotroph - Wikipedia

    en.wikipedia.org/wiki/Lithoautotroph

    A lithoautotroph is an organism that derives energy from reactions of reduced compounds of mineral (inorganic) origin. [1] Two types of lithoautotrophs are distinguished by their energy source; photolithoautotrophs derive their energy from light, while chemolithoautotrophs (chemolithotrophs or chemoautotrophs) derive their energy from chemical reactions. [1]

  8. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  9. Bacterial cell structure - Wikipedia

    en.wikipedia.org/wiki/Bacterial_cell_structure

    The bacterial cell wall differs from that of all other organisms by the presence of peptidoglycan which is located immediately outside of the cell membrane. Peptidoglycan is made up of a polysaccharide backbone consisting of alternating N-Acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) residues in equal amounts.