When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    The expression cos x + i sin x is sometimes abbreviated to cis x. The formula is important because it connects complex numbers and trigonometry. By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos nx and sin nx in terms of cos x ...

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    r = | z | = √ x 2 + y 2 is the magnitude of z and; φ = arg z = atan2(y, x). φ is the argument of z, i.e., the angle between the x axis and the vector z measured counterclockwise in radians, which is defined up to addition of 2π. Many texts write φ = tan −1 ⁠ y / x ⁠ instead of φ = atan2(y, x), but the first equation needs ...

  4. cis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Cis_(mathematics)

    x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.

  5. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x − 1 8 sin ⁡ 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  6. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity is also a special case of the more general identity that the n th roots of unity, for n > 1, add up to 0: = = Euler's identity is the case where n = 2. A similar identity also applies to quaternion exponential: let {i, j, k} be the basis quaternions; then,

  7. Talk:de Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/Talk:De_Moivre's_formula

    Increasing the power by p on both sides, (cos x + i sin x)^p/q = (cos a + i sin a)^p Now we know p/q is n, so (cos x + i sin x)^n = cos pa + i sin pa [Again using De Moivre's theorem for Integers for p] Now we can write a= x/q,so (cos x + i sin x)^n = cos (p/q)x + i sin (p/q) x Since p/q is n, therefore, (cos x + i sin x)^n = cos nx + i sin nx

  8. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    The real part of the other side is a polynomial in cos x and sin x, in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1. By the same reasoning, sin nx is the imaginary part of the polynomial, in which all powers of sin x are odd and thus, if one factor of sin x is factored out, the remaining ...

  9. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that ex 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  1. Related searches e x cosx+isinx c n 2 g p m mastic

    e x cosx+isinx c n 2 g p m mastic hc n 2 swimwear