Search results
Results From The WOW.Com Content Network
It is a physical constant, conventionally written as μ 0 (pronounced "mu nought" or "mu zero"). It quantifies the strength of the magnetic field induced by an electric current. Expressed in terms of SI base units, it has the unit kg⋅m⋅s −2 ⋅A −2. It can be also expressed in terms of SI derived units, N⋅A −2.
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).
The units of the first two quantities are the ampere and the ampere per centimetre respectively. The unit of magnetic permeability is that of the emu system, and the magnetic constitutive equations are B = (4 π /10)μH and B = (4 π /10)μ 0 H + μ 0 M. Magnetic reluctance is given a hybrid unit to ensure the validity of Ohm's law for magnetic ...
mu: magnetic moment: ampere square meter (A⋅m 2) coefficient of friction: unitless (dynamic) viscosity (also ) pascal second (Pa⋅s) permeability (electromagnetism) henry per meter (H/m) reduced mass: kilogram (kg) Standard gravitational parameter: cubic meter per second squared mu nought
Vacuum permittivity, commonly denoted ε 0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum.It may also be referred to as the permittivity of free space, the electric constant, or the distributed capacitance of the vacuum.
The value of the electric field at any point around these two charges is found by calculating the vector sum of the two electric fields from each of the charges acting alone. The permittivity and permeability are exactly the electric constant ε 0 [29] and magnetic constant μ 0, [30] respectively (in SI units), or exactly 1 (in Gaussian units).