Search results
Results From The WOW.Com Content Network
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis. Presentation of data on a logarithmic scale can be helpful when the data:
The log–linear type of a semi-log graph, defined by a logarithmic scale on the y-axis (vertical), and a linear scale on the x-axis (horizontal). Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
X-axis: The abundance rank. The most abundant species is given rank 1, the second most abundant is 2 and so on. Y-axis: The relative abundance. Usually measured on a log scale, this is a measure of a species abundance (e.g., the number of individuals) relative to the abundance of other species.
A volcano plot is constructed by plotting the negative logarithm of the p value on the y axis (usually base 10). This results in data points with low p values (highly significant) appearing toward the top of the plot. The x axis is the logarithm of the fold change between the two conditions. The logarithm of the fold change is used so that ...
Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1. A wide variety of sigmoid functions including the logistic and hyperbolic tangent functions have been used as the activation function of artificial neurons.
In the lower plot, both the area and population data have been transformed using the logarithm function. In statistics, data transformation is the application of a deterministic mathematical function to each point in a data set—that is, each data point z i is replaced with the transformed value y i = f(z i), where f is a function.