Search results
Results From The WOW.Com Content Network
A frequency ratio expressed in octaves is the base-2 logarithm (binary logarithm) of the ratio: = An amplifier or filter may be stated to have a frequency response of ±6 dB per octave over a particular frequency range, which signifies that the power gain changes by ±6 decibels (a factor of 4 in power), when the frequency changes by a factor of 2.
An octave band is a frequency band that spans one octave (Play ⓘ).In this context an octave can be a factor of 2 [1] [full citation needed] or a factor of 10 0.301. [2] [full citation needed] [3] [full citation needed] An octave of 1200 cents in musical pitch (a logarithmic unit) corresponds to a frequency ratio of 2 / 1 ≈ 10 0.301.
For example, an audio amplifier will usually have a frequency band ranging from 20 Hz to 20 kHz and representing the entire band using a decade log scale is very convenient. Typically the graph for such a representation would begin at 1 Hz (10 0 ) and go up to perhaps 100 kHz (10 5 ), to comfortably include the full audio band in a standard ...
It is usual to measure roll-off as a function of logarithmic frequency; consequently, the units of roll-off are either decibels per decade (dB/decade), where a decade is a tenfold increase in frequency, or decibels per octave (dB/8ve), where an octave is a twofold increase in frequency.
An octave is the interval between one musical pitch and another with double or half its frequency. For example, if one note has a frequency of 440 Hz, the note one octave above is at 880 Hz, and the note one octave below is at 220 Hz. The ratio of frequencies of two notes an octave apart is therefore 2:1.
12 tone equal temperament chromatic scale on C, one full octave ascending, notated only with sharps. Play ascending and descending ⓘ. An equal temperament is a musical temperament or tuning system that approximates just intervals by dividing an octave (or other interval) into steps such that the ratio of the frequencies of any adjacent pair of notes is the same.
A jump from the lowest semitone to the highest semitone in one octave doubles the frequency (for example, the fifth A is 440 Hz and the sixth A is 880 Hz). The frequency of a pitch is derived by multiplying (ascending) or dividing (descending) the frequency of the previous pitch by the twelfth root of two (approximately 1.059463).
In free space the path loss increases with 20 dB per decade (one decade is when the distance between the transmitter and the receiver increases ten times) or 6 dB per octave (one octave is when the distance between the transmitter and the receiver doubles). This can be used as a very rough first-order approximation for (microwave) communication ...