Search results
Results From The WOW.Com Content Network
The Letts nitrile synthesis is a chemical reaction of aromatic carboxylic acids with metal thiocyanates to form nitriles. The reaction includes the loss of carbon dioxide and potassium hydrosulfide. The polar basic substitution reaction was discovered in 1872 by Edmund A. Letts. [1] [2] The Letts nitrile synthesis
The structure of a nitrile: the functional group is highlighted blue. In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group.The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH 3 CH 2 C≡N is called "propionitrile" (or propanenitrile). [1]
The Kolbe nitrile synthesis is a method for the preparation of alkyl nitriles by reaction of the corresponding alkyl halide with a metal cyanide. [1] A side product for this reaction is the formation of an isonitrile because the cyanide ion is an ambident nucleophile .
The Rosenmund–von Braun synthesis is an organic reaction in which an aryl halide reacts with cuprous cyanide to yield an aryl nitrile. [1] [2] [3]The reaction was named after Karl Wilhelm Rosenmund who together with his Ph.D. student Erich Struck discovered in 1914 that aryl halide reacts with alcohol water solution of potassium cyanide and catalytic amounts of cuprous cyanide at 200 °C.
A dramatic success came when his theoretical prediction of the existence of secondary and tertiary alcohols was confirmed by the synthesis of the first of these classes of organic molecules. Kolbe was the first person to use the word synthesis in its present-day meaning, [ 4 ] and contributed a number of new chemical reactions.
A large scale application of the Ritter reaction is in the synthesis of tert-octylamine, by way of the intermediate formamide.This process was originally described by Ritter in 1948, [11] and an estimated 10,000 tons/y (year: 2000) of this and related lipophilic amines are prepared in this way. [12]
The Van Leusen reaction is the reaction of a ketone with TosMIC leading to the formation of a nitrile. It was first described in 1977 by Van Leusen and co-workers. [1] When aldehydes are employed, the Van Leusen reaction is particularly useful to form oxazoles and imidazoles. drawing of the van leusen reaction
The determining factor is typically how electron-rich or poor the nitrile is. For example: an electron-poor nitrile is a good electrophile (readily susceptible to attack from alkoxides etc.) but a poor nucleophile would typically be easier to protonate than to participate in the reaction and hence would be expected to react more readily under ...