Search results
Results From The WOW.Com Content Network
Reversed-phase liquid chromatography (RP-LC) is a mode of liquid chromatography in which non-polar stationary phase and polar mobile phases are used for the separation of organic compounds. [ 1 ] [ 2 ] [ 3 ] The vast majority of separations and analyses using high-performance liquid chromatography (HPLC) in recent years are done using the ...
The partition coefficient principle has been applied in paper chromatography, thin layer chromatography, gas phase and liquid–liquid separation applications. The 1952 Nobel Prize in chemistry was earned by Archer John Porter Martin and Richard Laurence Millington Synge for their development of the technique, which was used for their ...
Present day liquid chromatography that generally utilizes very small packing particles and a relatively high pressure is referred to as high-performance liquid chromatography. In HPLC the sample is forced by a liquid at high pressure (the mobile phase) through a column that is packed with a stationary phase composed of irregularly or ...
Denaturing high performance liquid chromatography (DHPLC) uses reversed-phase HPLC to interrogate SNPs. The key to DHPLC is the solid phase which has differential affinity for single and double-stranded DNA. In DHPLC, DNA fragments are denatured by heating and then allowed to reanneal.
From this revolution, the 1950s also saw the advent of paper chromatography, reversed-phase partition chromatography (RPC), and hydrophobic interaction chromatography (HIC). The first gels for use in LC were created using cross-linked dextrans ( Sephadex ) in an attempt to realize Synge's prediction that a unique single-piece stationary phase ...
Reverse phase high-performance liquid chromatography (RP-HPLC) involves a non-polar stationary phase, often a hydrocarbon chain, and a polar mobile or liquid phase. The mobile phase generally consists of an aqueous portion with an organic addition, such as methanol or acetonitrile .
See also Aqueous normal phase chromatography. It is commonly believed that in HILIC, the mobile phase forms a water-rich layer on the surface of the polar stationary phase vs. the water-deficient mobile phase, creating a liquid/liquid extraction system. The analyte is distributed between these two layers.
The derivatized amino acids are subjected to reversed phase chromatography, typically using a C8 or C18 silica column and an optimised elution gradient. The eluting amino acids are detected using a UV or fluorescence detector and the peak areas compared with those for derivatised standards in order to quantify each amino acid in the sample.