Search results
Results From The WOW.Com Content Network
A neuron receives signals from neighboring cells through branched, cellular extensions called dendrites.The neuron then propagates an electrical signal down a specialized axon extension from the basal pole to the synapse, where neurotransmitters are released to propagate the signal to another neuron or effector cell (e.g., muscle or gland).
When rod cells are in the dark, they are depolarized. In the rod cells, this depolarization is maintained by ion channels that remain open due to the higher voltage of the rod cell in the depolarized state. The ion channels allow calcium and sodium to pass freely into the cell, maintaining the depolarized state.
All cells in animal body tissues are electrically polarized – in other words, they maintain a voltage difference across the cell's plasma membrane, known as the membrane potential. This electrical polarization results from a complex interplay between protein structures embedded in the membrane called ion pumps and ion channels .
If such a layer of hydrogen or even H 2 gas bubbles appear on the positive plate of a battery, they interfere with the chemical action of the cell. An electrode covered with gases is said to be polarized. Polarization in galvanic cells causes the voltage and thus current to be reduced, especially if the bubbles cover a large fraction of a plate.
Cells with polarized plasma membranes must buffer and adequately distribute certain ions, such as sodium (Na +), potassium (K +), calcium (Ca 2+), and chloride (Cl −) to establish and maintain this polarity. Integral channel proteins such as the sodium-potassium pump actively maintain the electrochemical gradient through movement of sodium ...
Epithelial polarity is one example of the cell polarity that is a fundamental feature of many types of cells. Epithelial cells feature distinct 'apical', 'lateral' and 'basal' plasma membrane domains. Epithelial cells connect to one another via their lateral membranes to form epithelial sheets that line cavities and surfaces throughout the ...
Developmental bioelectricity is a sub-discipline of biology, related to, but distinct from, neurophysiology and bioelectromagnetics.Developmental bioelectricity refers to the endogenous ion fluxes, transmembrane and transepithelial voltage gradients, and electric currents and fields produced and sustained in living cells and tissues.
If several such events occur in a short time, the axon hillock may become sufficiently depolarized for the voltage-gated sodium channels to open. This initiates an action potential that then propagates down the axon. As sodium enters the cell, the cell membrane potential becomes more positive, which activates even more sodium channels in the ...