When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Optical sectioning - Wikipedia

    en.wikipedia.org/wiki/Optical_sectioning

    With no modification to the microscope, i.e. with a simple wide field light microscope, the quality of optical sectioning is governed by the same physics as the depth of field effect in photography. For a high numerical aperture lens, equivalent to a wide aperture, the depth of field is small (shallow focus) and gives

  3. Depth of field - Wikipedia

    en.wikipedia.org/wiki/Depth_of_field

    The hyperfocal distance has a property called "consecutive depths of field", where a lens focused at an object whose distance from the lens is at the hyperfocal distance H will hold a depth of field from H/2 to infinity, if the lens is focused to H/2, the depth of field will be from H/3 to H; if the lens is then focused to H/3, the depth of ...

  4. Microscopy - Wikipedia

    en.wikipedia.org/wiki/Microscopy

    Antonie van Leeuwenhoek (1632–1723). The field of microscopy (optical microscopy) dates back to at least the 17th-century.Earlier microscopes, single lens magnifying glasses with limited magnification, date at least as far back as the wide spread use of lenses in eyeglasses in the 13th century [2] but more advanced compound microscopes first appeared in Europe around 1620 [3] [4] The ...

  5. Confocal microscopy - Wikipedia

    en.wikipedia.org/wiki/Confocal_microscopy

    Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]

  6. Focus stacking - Wikipedia

    en.wikipedia.org/wiki/Focus_stacking

    Focus stacking (for extended depth of field) in bright field light microscopy. This example is of a diatom microfossil in diatomaceous earth. Three source images at different focus distances (top left) are combined with masks (top right) to obtain the contributions of their respective images to the final focus stacked image (bottom).

  7. Super-resolution microscopy - Wikipedia

    en.wikipedia.org/wiki/Super-resolution_microscopy

    There are two major groups of methods for super-resolution microscopy in the far-field that can improve the resolution by a much larger factor: [10] Deterministic super-resolution: the most commonly used emitters in biological microscopy, fluorophores, show a nonlinear response to excitation, which can be exploited to enhance resolution.

  8. Stereo microscope - Wikipedia

    en.wikipedia.org/wiki/Stereo_microscope

    Great working distance and depth of field are important qualities for this type of microscope. Both qualities are inversely correlated with resolution: the higher the resolution (i.e. the greater the distance at which two adjacent points can be distinguished as separate), the smaller the depth of field and working distance. Some stereo ...

  9. Live-cell imaging - Wikipedia

    en.wikipedia.org/wiki/Live-cell_imaging

    [20] [21] Quantitative phase-contrast microscopy has an advantage over fluorescent and phase-contrast microscopy in that it is both non-invasive and quantitative in its nature. Due to the narrow focal depth of conventional microscopy, live-cell imaging is to a large extent currently limited to observing cells on a single plane.