Search results
Results From The WOW.Com Content Network
For pure elements or compounds, e.g. pure copper, pure water, etc. the liquidus and solidus are at the same temperature, and the term melting point may be used. There are also some mixtures which melt at a particular temperature, known as congruent melting. One example is eutectic mixture. In a eutectic system, there is particular mixing ratio ...
Firstly, a pure chemical should appear in at least one chemical phase and can also be characterized by its phase diagram. Secondly, a pure chemical should prove to be homogeneous (i.e., a uniform substance that has the same composition throughout the material [2]). The perfect pure chemical will pass all attempts to separate and purify it further.
A material is a substance or mixture of substances that constitutes an object.Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geological origin or biological function.
Low-pressure phase diagram of pure iron. BCC is body centered cubic and FCC is face-centered cubic. Iron-carbon eutectic phase diagram, showing various forms of Fe x C y substances. Iron allotropes, showing the differences in structure. The alpha iron (α-Fe) is a body-centered cubic (BCC) and the gamma iron (γ-Fe) is a face-centered cubic (FCC).
The melting point of a pure substance is always higher and has a smaller range than the melting point of an impure substance or, more generally, of mixtures. The higher the quantity of other components, the lower the melting point and the broader will be the melting point range, often referred to as the "pasty range".
A chemical graph is a labeled graph whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. Its vertices are labeled with the kinds of the corresponding atoms and edges are labeled with the types of bonds. [1] For particular purposes any of the labelings may be ignored. A hydrogen-depleted molecular graph ...
The heat content has been measured and tabulated for virtually all known substances, and is commonly expressed as a polynomial function of temperature. The heat content of an ideal gas is independent of pressure (or volume), but the heat content of real gases varies with pressure, hence the need to define the state for the gas (real or ideal ...
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.