Search results
Results From The WOW.Com Content Network
It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane. [1] [2] At solar noon, the zenith angle is at a minimum and is equal to latitude minus solar declination angle. This is the basis by which ancient mariners navigated the oceans. [3]
"AM1.5", 1.5 atmosphere thickness, corresponds to a solar zenith angle of =48.2°. While the summertime AM number for mid-latitudes during the middle parts of the day is less than 1.5, higher figures apply in the morning and evening and at other times of the year.
This is the coordinate system normally used to calculate the position of the Sun in terms of solar zenith angle and solar azimuth angle, and the two parameters can be used to depict the Sun path. [3] This calculation is useful in astronomy, navigation, surveying, meteorology, climatology, solar energy, and sundial design.
The following formulas can also be used to approximate the solar azimuth angle, but these formulas use cosine, so the azimuth angle as shown by a calculator will always be positive, and should be interpreted as the angle between zero and 180 degrees when the hour angle, h, is negative (morning) and the angle between 180 and 360 degrees when the ...
The equation above neglects the influence of atmospheric refraction (which lifts the solar disc — i.e. makes the solar disc appear higher in the sky — by approximately 0.6° when it is on the horizon) and the non-zero angle subtended by the solar disc — i.e. the apparent diameter of the sun — (about 0.5°). The times of the rising and ...
A 2021 publication [8] about solar geometry first calculates the x-, y-, and z-component of the solar vector, which is a unit vector with its tail fixed at the observer's location and its head kept pointing toward the Sun, and then uses the components to calculate the solar zenith angle and solar azimuth angle. The calculated solar vector at 1 ...
For example, at 10:30 AM local apparent time the hour angle is −22.5° (15° per hour times 1.5 hours before noon). [4] The cosine of the hour angle (cos(h)) is used to calculate the solar zenith angle. At solar noon, h = 0.000 so cos(h) = 1, and before and after solar noon the cos(± h) term = the same value for morning (negative hour angle ...
with θ being the zenith angle (90° minus the altitude) of the sun. For the sun at the zenith , this gives 947 W/m 2 . However, another source states that direct sunlight under these conditions, with 1367 W/m 2 above the atmosphere, is about 1050 W/m 2 , and total insolation about 1120 W/m 2 .