Search results
Results From The WOW.Com Content Network
This illustrates how the logit serves as a link function between the probability and the linear regression expression. Given that the logit ranges between negative and positive infinity, it provides an adequate criterion upon which to conduct linear regression and the logit is easily converted back into the odds. [2]
In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model. [4]
The logit in logistic regression is a special case of a link function in a generalized linear model: it is the canonical link function for the Bernoulli distribution. More abstractly, the logit is the natural parameter for the binomial distribution; see Exponential family § Binomial distribution.
Conditional logistic regression is an extension of logistic regression that allows one to account for stratification and matching. Its main field of application is observational studies and in particular epidemiology. It was devised in 1978 by Norman Breslow, Nicholas Day, Katherine Halvorsen, Ross L. Prentice and C. Sabai. [1]
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
Logit models can be estimated by logistic regression, and probit models can be estimated by probit regression. Nonparametric methods, such as the maximum score estimator , have been proposed. [ 28 ] [ 29 ] Estimation of such models is usually done via parametric, semi-parametric and non-parametric maximum likelihood methods, [ 30 ] but can also ...
Simple linear regression and multiple regression using least squares can be done in some spreadsheet applications and on some calculators. While many statistical software packages can perform various types of nonparametric and robust regression, these methods are less standardized.