When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jeffreys prior - Wikipedia

    en.wikipedia.org/wiki/Jeffreys_prior

    For the Gaussian distribution of the real value () = / with fixed, the Jeffreys prior for the mean is () = [(⁡ ())] = [()] = + () = / That is, the Jeffreys prior for does not depend upon ; it is the unnormalized uniform distribution on the real line — the distribution that is 1 (or some other fixed constant) for all points.

  3. Normal-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Normal-Wishart_distribution

    In probability theory and statistics, the normal-Wishart distribution (or Gaussian-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and precision matrix (the inverse of the covariance matrix ).

  4. Dirichlet distribution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_distribution

    It is a multivariate generalization of the beta distribution, [1] hence its alternative name of multivariate beta distribution (MBD). [2] Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial ...

  5. Normal-inverse-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Normal-inverse-Wishart...

    In probability theory and statistics, the normal-inverse-Wishart distribution (or Gaussian-inverse-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and covariance matrix (the inverse of the precision matrix). [1]

  6. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    A graphical tool for assessing normality is the normal probability plot, a quantile-quantile plot (QQ plot) of the standardized data against the standard normal distribution. Here the correlation between the sample data and normal quantiles (a measure of the goodness of fit) measures how well the data are modeled by a normal distribution. For ...

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  8. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    An informative prior expresses specific, definite information about a variable. An example is a prior distribution for the temperature at noon tomorrow. A reasonable approach is to make the prior a normal distribution with expected value equal to today's noontime temperature, with variance equal to the day-to-day variance of atmospheric temperature, or a distribution of the temperature for ...

  9. g-prior - Wikipedia

    en.wikipedia.org/wiki/G-prior

    Consider a data set (,), …, (,), where the are Euclidean vectors and the are scalars.The multiple regression model is formulated as = +. where the are random errors. Zellner's g-prior for is a multivariate normal distribution with covariance matrix proportional to the inverse Fisher information matrix for , similar to a Jeffreys prior.