When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation

  3. Pseudoscalar - Wikipedia

    en.wikipedia.org/wiki/Pseudoscalar

    A pseudoscalar also results from any scalar product between a pseudovector and an ordinary vector. The prototypical example of a pseudoscalar is the scalar triple product, which can be written as the scalar product between one of the vectors in the triple product and the cross product between the two other vectors, where the latter is a ...

  4. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    The scalar triple product of three vectors is defined as = = (). Its value is the determinant of the matrix whose columns are the Cartesian coordinates of the three vectors. It is the signed volume of the parallelepiped defined by the three vectors, and is isomorphic to the three-dimensional special case of the exterior product of three vectors.

  5. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    The cross product (also called the vector product or outer product) is only meaningful in three or seven dimensions. The cross product differs from the dot product primarily in that the result of the cross product of two vectors is a vector. The cross product, denoted a × b, is a vector perpendicular to both a and b and is defined as

  6. Exterior algebra - Wikipedia

    en.wikipedia.org/wiki/Exterior_algebra

    The scalar coefficient is the triple product of the three vectors. The cross product and triple product in three dimensions each admit both geometric and algebraic interpretations. The cross product u × v can be interpreted as a vector which is perpendicular to both u and v and whose magnitude is equal to the area of the parallelogram ...

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. Trace diagram - Wikipedia

    en.wikipedia.org/wiki/Trace_diagram

    The scalar triple product identity follows because each is a different representation of the same diagram's function. As a second example, one can show that (where the equality indicates that the identity holds for the underlying multilinear functions).

  9. Comparison of vector algebra and geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_vector...

    The torque or curl is then a normal vector field in this 3rd dimension. By contrast, geometric algebra in 2 dimensions defines these as a pseudoscalar field (a bivector), without requiring a 3rd dimension. Similarly, the scalar triple product is ad hoc, and can instead be expressed uniformly using the exterior product and the geometric product.