Search results
Results From The WOW.Com Content Network
In contrast, pathogenic anti-dsDNA antibodies found in SLE are usually of IgG isotype and show high avidity for dsDNA. [15] One possible mechanism for anti-dsDNA and their role in nephritis is the formation of immune complexes that arise by indirect binding to DNA or nucleosomes that are adhered to the glomerular basement membrane (GBM).
The gene targeting method in knockout mice uses mouse embryonic stem cells to deliver artificial genetic material (mostly of therapeutic interest), which represses the target gene of the mouse by the principle of homologous recombination. The mouse thereby acts as a working model to understand the effects of a specific mammalian gene.
To follow the transition of dsDNA (double-stranded) to ssDNA (single-stranded), intercalating dyes are employed. These dyes show differential fluorescence emission dependent on their association with double-stranded or single-stranded DNA. SYBR Green I is a first generation dye for HRM. It fluoresces when intercalated into dsDNA and not ssDNA.
A section of DNA. The bases lie horizontally between the two spiraling strands [15] (animated version). The DNA double helix is stabilized primarily by two forces: hydrogen bonds between nucleotides and base-stacking interactions among aromatic nucleobases. [16] The four bases found in DNA are adenine (A), cytosine (C), guanine (G) and thymine (T).
cGAS is found at the plasma membrane [6] and is responsible for detecting cytosolic double stranded DNA, normally found in the cell nucleus, in order to stimulate production of IFN-β. cGAS is also found in the nucleus where tight tethering to chromatin prevents its activation by self-DNA. [7]
In mice and humans, the BRCA2 complex primarily mediates orderly assembly of RAD51 on ssDNA, which is an active substrate in homologous pairing and strand invasion. [31] BRCA2 also redirects RAD51 from dsDNA and prevents its dissociation from ssDNA. [ 31 ]
DNA end resection, also called 5′–3′ degradation, is a biochemical process where the blunt end of a section of double-stranded DNA (dsDNA) is modified by cutting away some nucleotides from the 5' end to produce a 3' single-stranded sequence.
siRNAs act in the nucleus and the cytoplasm and are involved in RNAi as well as CDGS. [5] siRNAs come from long dsRNA precursors derived from a variety of single-stranded RNA (ssRNA) precursors, such as sense and antisense RNAs. siRNAs also come from hairpin RNAs derived from transcription of inverted repeat regions. siRNAs may also arise enzymatically from non-coding RNA precursors. [30]