Search results
Results From The WOW.Com Content Network
The CRC and associated polynomial typically have a name of the form CRC-n-XXX as in the table below. The simplest error-detection system, the parity bit, is in fact a 1-bit CRC: it uses the generator polynomial x + 1 (two terms), [5] and has the name CRC-1.
To maximise computation speed, an intermediate remainder can be calculated by first computing the CRC of the message modulo a sparse polynomial which is a multiple of the CRC polynomial. For CRC-32, the polynomial x 123 + x 111 + x 92 + x 84 + x 64 + x 46 + x 23 + 1 has the property that its terms (feedback taps) are at least 8 positions apart ...
In the above equations, + + represents the original message bits 111, + is the generator polynomial, and the remainder (equivalently, ) is the CRC. The degree of the generator polynomial is 1, so we first multiplied the message by to get + +.
Here are some examples of such properties: A polynomial code is cyclic if and only if the generator polynomial divides . If the generator polynomial is primitive, then the resulting code has Hamming distance at least 3, provided that .
Since the generator polynomial is of degree 10, this code has 5 data bits and 10 checksum bits. It is also denoted as: (15, 5) BCH code. (This particular generator polynomial has a real-world application, in the "format information" of the QR code.) The BCH code with = and higher has the generator polynomial
To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).
By 1963 (or possibly earlier), J. J. Stone (and others) recognized that Reed–Solomon codes could use the BCH scheme of using a fixed generator polynomial, making such codes a special class of BCH codes, [4] but Reed–Solomon codes based on the original encoding scheme are not a class of BCH codes, and depending on the set of evaluation ...
It is not suitable for detecting maliciously introduced errors. It is characterized by specification of a generator polynomial, which is used as the divisor in a polynomial long division over a finite field, taking the input data as the dividend. The remainder becomes the result. A CRC has properties that make it well suited for detecting burst ...