Search results
Results From The WOW.Com Content Network
Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy). Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.
Hematite (/ ˈ h iː m ə ˌ t aɪ t, ˈ h ɛ m ə-/), also spelled as haematite, is a common iron oxide compound with the formula, Fe 2 O 3 and is widely found in rocks and soils. [6] Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of Fe 2 O 3. It has the same crystal structure as corundum ...
Electron micrograph of a 2D crystal of the LH1-Reaction center photosynthetic unit. A photosynthetic reaction center is a complex of several proteins, biological pigments, and other co-factors that together execute the primary energy conversion reactions of photosynthesis.
The photosynthetic efficiency (i.e. oxygenic photosynthesis efficiency) is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction 6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2
A photosynthate is the resulting product of photosynthesis, these products are generally sugars. These sugars that are created from photosynthesis are broken down to create energy for use by the plant. Sugar and other compounds move via the phloem to tissues that have an energy demand. These areas of demand are called sinks.
Plant perception is the ability of plants to sense and respond to the environment by adjusting their morphology and physiology. [1] Botanical research has revealed that plants are capable of reacting to a broad range of stimuli, including chemicals, gravity, light, moisture, infections, temperature, oxygen and carbon dioxide concentrations, parasite infestation, disease, physical disruption ...
The chemical pathway of oxygenic photosynthesis fixes carbon in two stages: the light-dependent reactions and the light-independent reactions. The light-dependent reactions capture light energy to transfer electrons from water and convert NADP +, ADP, and inorganic phosphate into the energy-storage molecules NADPH and ATP.
Photoheterotrophs generate ATP using light, in one of two ways: [6] [7] they use a bacteriochlorophyll-based reaction center, or they use a bacteriorhodopsin.The chlorophyll-based mechanism is similar to that used in photosynthesis, where light excites the molecules in a reaction center and causes a flow of electrons through an electron transport chain (ETS).