Search results
Results From The WOW.Com Content Network
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q T Q = Q Q T = I , {\displaystyle Q^{\mathrm {T} }Q=QQ^{\mathrm {T} }=I,} where Q T is the transpose of Q and I is the identity matrix .
In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...
A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis.
The vector projection of a vector on a nonzero vector is defined as [note 1] = , , , where , denotes the inner product of the vectors and . This means that proj u ( v ) {\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )} is the orthogonal projection of v {\displaystyle \mathbf {v} } onto the line spanned by u ...
Using Zorn's lemma and the Gram–Schmidt process (or more simply well-ordering and transfinite recursion), one can show that every Hilbert space admits an orthonormal basis; [7] furthermore, any two orthonormal bases of the same space have the same cardinality (this can be proven in a manner akin to that of the proof of the usual dimension ...
PGF/TikZ is a pair of languages for producing vector graphics (e.g., technical illustrations and drawings) from a geometric/algebraic description, with standard features including the drawing of points, lines, arrows, paths, circles, ellipses and polygons.
where e represents a vector of suitable dimension with all values equal to 1. Matching the structure of P, π is partitioned to π 1, π 2, π 3, …. To compute these probabilities the column stochastic matrix G is computed such that [3] = =. G is called the auxiliary matrix. [8]
There are a number of matrix norms that act on the singular values of the matrix. Frequently used examples include the Schatten p-norms, with p = 1 or 2. For example, matrix regularization with a Schatten 1-norm, also called the nuclear norm, can be used to enforce sparsity in the spectrum of a matrix.