When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    U nucleus has an excitation energy below the critical fission energy." [4]: 25–28 [5]: 282–287 [10] [11] About 6 MeV of the fission-input energy is supplied by the simple binding of an extra neutron to the heavy nucleus via the strong force; however, in many fissionable isotopes, this amount of energy is not enough for fission.

  3. Fission barrier - Wikipedia

    en.wikipedia.org/wiki/Fission_Barrier

    In nuclear physics and nuclear chemistry, the fission barrier is the activation energy required for a nucleus of an atom to undergo fission. This barrier may also be defined as the minimum amount of energy required to deform the nucleus to the point where it is irretrievably committed to the fission process.

  4. Photodisintegration - Wikipedia

    en.wikipedia.org/wiki/Photodisintegration

    Photodisintegration is endothermic (energy absorbing) for atomic nuclei lighter than iron and sometimes exothermic (energy releasing) for atomic nuclei heavier than iron. Photodisintegration is responsible for the nucleosynthesis of at least some heavy, proton-rich elements via the p-process in supernovae of type Ib, Ic, or II. This causes the ...

  5. Decay heat - Wikipedia

    en.wikipedia.org/wiki/Decay_heat

    Decay heat as fraction of full power for a reactor SCRAMed from full power at time 0, using two different correlations. In a typical nuclear fission reaction, 187 MeV of energy are released instantaneously in the form of kinetic energy from the fission products, kinetic energy from the fission neutrons, instantaneous gamma rays, or gamma rays from the capture of neutrons. [7]

  6. File:High-energy induced fission theory and application. (IA ...

    en.wikipedia.org/wiki/File:High-energy_induced...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate

  7. Discovery of nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_nuclear_fission

    The fission process often produces gamma rays and releases a very large amount of energy, even by the energetic standards of radioactive decay. Scientists already knew about alpha decay and beta decay , but fission assumed great importance because the discovery that a nuclear chain reaction was possible led to the development of nuclear power ...

  8. Orders of magnitude (energy) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(energy)

    Energy released by a single event of two protons fusing into deuterium (1.44 megaelectronvolt MeV) [33] 10 −12: pico-(pJ) 2.3×10 −12 J: Kinetic energy of neutrons produced by DT fusion, used to trigger fission (14.1 MeV) [34] [35] 10 −11 3.4×10 −11 J: Average total energy released in the nuclear fission of one uranium-235 atom (215 ...

  9. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    Energy levels from quantum states in two different shells will be separated by a relatively large energy gap. So when the number of neutrons and protons completely fills the energy levels of a given shell in the nucleus, the binding energy per nucleon will reach a local maximum and thus that particular configuration will have a longer lifetime ...