When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    That is, xlim sup X n if and only if there exists a subsequence (X n k) of (X n) such that xX n k for all k. lim inf X n consists of elements of X which belong to X n for all except finitely many n (i.e., for cofinitely many n). That is, xlim inf X n if and only if there exists some m > 0 such that xX n for all n > m.

  3. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    If () for all x in an interval that contains c, except possibly c itself, and the limit of () and () both exist at c, then [5] () If lim x → c f ( x ) = lim x → c h ( x ) = L {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} and f ( x ) ≤ g ( x ) ≤ h ( x ) {\displaystyle f(x)\leq g(x)\leq h(x)} for all x in an open interval that ...

  4. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.

  5. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    supremum = least upper bound. A lower bound of a subset of a partially ordered set (,) is an element of such that . for all .; A lower bound of is called an infimum (or greatest lower bound, or meet) of if

  6. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    () (using x ≥ 0 to obtain the final inequality) so that: = One must use lim sup because it is not known if t n converges. For the other inequality, by the above expression for t n , if 2 ≤ m ≤ n , we have: 1 + x + x 2 2 !

  7. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that ex 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  8. Indeterminate form - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_form

    A limit taking one of these indeterminate forms might tend to zero, might tend to any finite value, might tend to infinity, or might diverge, depending on the specific functions involved. A limit which unambiguously tends to infinity, for instance lim x → 0 1 / x 2 = ∞ , {\textstyle \lim _{x\to 0}1/x^{2}=\infty ,} is not considered ...

  9. Talk:Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Talk:Limit_inferior_and...

    The limit inferior of xn is the largest real number b that, for any positive real number \varepsilon, there exists a natural number N such that x_n>b-\varepsilon for all n > N. In other words, any number below the limit inferior is an eventual lower bound for the sequence.