When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).

  3. Deficient number - Wikipedia

    en.wikipedia.org/wiki/Deficient_number

    Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient. Denoting by σ(n) the sum of divisors, the value 2n – σ(n) is called the number's deficiency.

  4. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    918,082: 9 − 1 + 8 − 0 + 8 − 2 = 22 = 2 × 11. Add the digits in blocks of two from right to left. The result must be divisible by 11. [2] 627: 6 + 27 = 33 = 3 × 11. Subtract the last digit from the rest. The result must be divisible by 11. 627: 62 − 7 = 55 = 5 × 11. Add 10 times the last digit to the rest. The result must be ...

  5. Reverse divisible number - Wikipedia

    en.wikipedia.org/wiki/Reverse_divisible_number

    The reverse divisor properties of the first two of these numbers, 1089 and 2178, were mentioned by W. W. Rouse Ball in his Mathematical Recreations. [7] In A Mathematician's Apology , G. H. Hardy criticized Rouse Ball for including this problem, writing:

  6. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.

  7. Aliquot sum - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sum

    In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.

  8. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.