When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electrical reactance - Wikipedia

    en.wikipedia.org/wiki/Electrical_reactance

    In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...

  3. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Capacitance is the ability of an object to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related notions of capacitance: self capacitance and mutual capacitance.

  4. T-antenna - Wikipedia

    en.wikipedia.org/wiki/T-antenna

    C ant. is the apparent capacitance of the antenna at the input terminals L ℓ.c. is the inductance of the loading coil. At resonance the capacitive reactance of the antenna is cancelled by the loading coil so the input impedance at resonance Z 0 is just the sum of the resistances in the antenna circuit [12]

  5. Capacitive power supply - Wikipedia

    en.wikipedia.org/wiki/Capacitive_power_supply

    A capacitive power supply usually has a rectifier and filter to generate a direct current from the reduced alternating voltage. Such a supply comprises a capacitor, C1 whose reactance limits the current flowing through the rectifier bridge D1. A resistor, R1, connected in series with it protects against voltage spikes during switching operations.

  6. Electrical susceptance - Wikipedia

    en.wikipedia.org/wiki/Electrical_susceptance

    The reactance and susceptance are only reciprocals in the absence of either resistance or conductance (only if either R = 0 or G = 0, either of which implies the other, as long as Z ≠ 0, or equivalently as long as Y ≠ 0).

  7. Electrical impedance - Wikipedia

    en.wikipedia.org/wiki/Electrical_impedance

    In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]

  8. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    At the RLC circuit's natural frequency =, the inductance perfectly cancels the capacitance, so total reactance is zero. Since the total impedance at ω 0 {\displaystyle \omega _{0}} is just the real-value of ESR {\displaystyle {\text{ESR}}} , average power dissipation reaches its maximum of ⁠ V RMS 2 / ESR ⁠ , where V RMS is the root mean ...

  9. LC circuit - Wikipedia

    en.wikipedia.org/wiki/LC_circuit

    Inductive reactance = increases as frequency increases, while capacitive reactance = decreases with increase in frequency (defined here as a positive number). At one particular frequency, these two reactances are equal and the voltages across them are equal and opposite in sign; that frequency is called the resonant frequency f 0 for the given ...