Search results
Results From The WOW.Com Content Network
DNA polymerase III synthesizes base pairs at a rate of around 1000 nucleotides per second. [3] DNA Pol III activity begins after strand separation at the origin of replication. Because DNA synthesis cannot start de novo, an RNA primer, complementary to part of the single-stranded DNA, is synthesized by primase (an RNA polymerase): [citation ...
DNA polymerase moves along the old strand in the 3'–5' direction, creating a new strand having a 5'–3' direction. DNA polymerase with proofreading ability. The main function of DNA polymerase is to synthesize DNA from deoxyribonucleotides, the building blocks of DNA. The DNA copies are created by the pairing of nucleotides to bases present ...
The clamp-polymerase protein–protein interactions are stronger and more specific than the direct interactions between the polymerase and the template DNA strand; because one of the rate-limiting steps in the DNA synthesis reaction is the association of the polymerase with the DNA template, the presence of the sliding clamp dramatically ...
In molecular biology, the δ (delta) subunit of DNA polymerase III is encoded by the holA gene in E. coli and other bacteria. Along with the γ, δ', χ, and ψ subunits that make up the core polymerase, and the β accessory proteins, the δ subunit is responsible for the high speed and processivity of polIII. [1] [2]
Chloroplast DNA (cpDNA), also known as plastid DNA (ptDNA) is the DNA located in chloroplasts, which are photosynthetic organelles located within the cells of some eukaryotic organisms. Chloroplasts, like other types of plastid , contain a genome separate from that in the cell nucleus .
In addition to 5'→3' polymerase activity, the bacterial thermostable DNA polymerases (belonging to the A-type DNA polymerases) have 5'→3' exonuclease activity and generate an adenosine overhang (sticky ends) at the 3' end of the newly generated strand.
The double-stranded structure of DNA provides a simple mechanism for DNA replication. Here, the two strands are separated and then each strand's complementary DNA sequence is recreated by an enzyme called DNA polymerase. This enzyme makes the complementary strand by finding the correct base through complementary base pairing and bonding it onto ...
Structure of Taq DNA polymerase. In biochemistry, a polymerase is an enzyme (EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base-pairing interactions or RNA by half ladder replication.