Search results
Results From The WOW.Com Content Network
Electron cloud growth can be a grave limitation in bunch currents and total beam currents if multipacting occurs. Multipacting can occur when the electron cloud dynamics can achieve a resonance with the bunch spacing of the accelerator beam.
The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld .
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, [1] principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
Atomic orbitals are basic building blocks of the atomic orbital model (or electron cloud or wave mechanics model), a modern framework for visualizing submicroscopic behavior of electrons in matter. In this model, the electron cloud of an atom may be seen as being built up (in approximation) in an electron configuration that is a product of ...
In a simulation, the potential energy of an atom, , is given by [3] = (()) + (), where is the distance between atoms and , is a pair-wise potential function, is the contribution to the electron charge density from atom of type at the location of atom , and is an embedding function that represents the energy required to place atom of type into the electron cloud.
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]
The model is derived by modeling an electron orbiting a massive, stationary nucleus as a spring-mass-damper system. [2] [3] [4] The electron is modeled to be connected to the nucleus via a hypothetical spring and its motion is damped by via a hypothetical damper. The damping force ensures that the oscillator's response is finite at its ...
This result can be generalized to other systems, such as positronium (an electron orbiting a positron) and muonium (an electron orbiting an anti-muon) by using the reduced mass of the system and considering the possible change in charge. Typically, Bohr model relations (radius, energy, etc.) can be easily modified for these exotic systems (up ...