When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cramér–Rao bound - Wikipedia

    en.wikipedia.org/wiki/Cramér–Rao_bound

    [6] [7] It is also known as Fréchet-Cramér–Rao or Fréchet-Darmois-Cramér-Rao lower bound. It states that the precision of any unbiased estimator is at most the Fisher information ; or (equivalently) the reciprocal of the Fisher information is a lower bound on its variance .

  3. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    The Cramér–Rao bound [9] [10] states that the inverse of the Fisher information is a lower bound on the variance of any unbiased estimator of θ. Van Trees (1968) and Frieden (2004) provide the following method of deriving the Cramér–Rao bound, a result which describes use of the Fisher information.

  4. Quantum Cramér–Rao bound - Wikipedia

    en.wikipedia.org/wiki/Quantum_Cramér–Rao_bound

    The quantum Cramér–Rao bound is the quantum analogue of the classical Cramér–Rao bound. It bounds the achievable precision in parameter estimation with a quantum system: It bounds the achievable precision in parameter estimation with a quantum system:

  5. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    In statistics, efficiency is a measure of quality of an estimator, of an experimental design, [1] or of a hypothesis testing procedure. [2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound.

  6. C. R. Rao - Wikipedia

    en.wikipedia.org/wiki/C._R._Rao

    His other contributions include the Fisher–Rao theorem, Rao distance, and orthogonal arrays. He was the author of 15 books [11] and authored over 400 journal publications. Rao received 38 honorary doctoral degrees from universities in 19 countries around the world and numerous awards and medals for his contributions to statistics and science.

  7. Minimum-variance unbiased estimator - Wikipedia

    en.wikipedia.org/wiki/Minimum-variance_unbiased...

    In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter.

  8. Pseudo-range multilateration - Wikipedia

    en.wikipedia.org/wiki/Pseudo-range_multilateration

    The accuracy can be calculated by using the Cramér–Rao bound and taking account of the above factors in its formulation. Additionally, a configuration of the sensors that minimizes a metric obtained from the Cramér–Rao bound can be chosen so as to optimize the actual position estimation of the target in a region of interest. [6]

  9. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    In some cases an unbiased efficient estimator exists, which, in addition to having the lowest variance among unbiased estimators, satisfies the Cramér–Rao bound, which is an absolute lower bound on variance for statistics of a variable.