Search results
Results From The WOW.Com Content Network
The absolute temperature (Kelvin) scale can be loosely interpreted as the average kinetic energy of the system's particles. The existence of negative temperature, let alone negative temperature representing "hotter" systems than positive temperature, would seem paradoxical in this interpretation.
[13] [14] Fairly pure silicon (Si) has a negative coefficient of thermal expansion for temperatures between about 18 K and 120 K. [15] Cubic Scandium trifluoride has this property which is explained by the quartic oscillation of the fluoride ions. The energy stored in the bending strain of the fluoride ion is proportional to the fourth power of ...
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
Therefore, many materials that produce acceptable values of include materials that have been alloyed or possess variable negative temperature coefficient (NTC), which occurs when a physical property (such as thermal conductivity or electrical resistivity) of a material lowers with increasing temperature, typically in a defined temperature range ...
To explain this definition, consider a reversible Carnot cycle engine, where is the amount of heat energy transferred into the system, is the heat leaving the system, is the work done by the system (), is the temperature of the hot reservoir in Celsius, and is the temperature of the cold reservoir in Celsius.
Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are ...
The Boyle temperature, named after Robert Boyle, is formally defined as the temperature for which the second virial coefficient, (), becomes zero. It is at this temperature that the attractive forces and the repulsive forces acting on the gas particles balance out
For a similar process at constant temperature and volume, the change in Helmholtz free energy must be negative, <. Thus, a negative value of the change in free energy (G or A) is a necessary condition for a process to be spontaneous. This is the most useful form of the second law of thermodynamics in chemistry, where free-energy changes can be ...