Search results
Results From The WOW.Com Content Network
While random forests often achieve higher accuracy than a single decision tree, they sacrifice the intrinsic interpretability of decision trees. Decision trees are among a fairly small family of machine learning models that are easily interpretable along with linear models, rule-based models, and attention-based models. This interpretability is ...
When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each sample is only considered out-of-bag for the trees that do not include it in their bootstrap sample.
If the trees in the random forests are too deep, overfitting can still occur due to over-specificity. If the forest is too large, the algorithm may become less efficient due to an increased runtime. Random forests also do not generally perform well when given sparse data with little variability. [7]
DRAKON – Algorithm mapping tool; Markov chain – Random process independent of past history; Random forest – Tree-based ensemble machine learning method; Ordinal priority approach – Multiple-criteria decision analysis method; Odds algorithm – Method of computing optimal strategies for last-success problems; Topological combinatorics
[1] [2] When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest. [1] As with other boosting methods, a gradient-boosted trees model is built in stages, but it generalizes the other methods by allowing optimization of an arbitrary differentiable loss function.
Random forest, a machine-learning classifier based on choosing random subsets of variables for each tree and using the most frequent tree output as the overall classification; Branching process, a model of a population in which each individual has a random number of children
An ensemble of models employing the random subspace method can be constructed using the following algorithm: Let the number of training points be N and the number of features in the training data be D. Let L be the number of individual models in the ensemble. For each individual model l, choose n l (n l < N) to be the number of input points for l.
Isolation Forest is an algorithm for data anomaly detection using binary trees. It was developed by Fei Tony Liu in 2008. [ 1 ] It has a linear time complexity and a low memory use, which works well for high-volume data.