Ads
related to: obtuse triangles examples geometry problems and solutions
Search results
Results From The WOW.Com Content Network
An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry , no Euclidean triangle can have more than one obtuse angle.
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one). [2]: pp. 12–13
If a 2 + b 2 < c 2, then the triangle is obtuse. Edsger W. Dijkstra has stated this proposition about acute, right, and obtuse triangles in this language: sgn(α + β − γ) = sgn(a 2 + b 2 − c 2), where α is the angle opposite to side a, β is the angle opposite to side b, γ is the angle opposite to side c, and sgn is the sign function. [30]
This list of triangle topics includes things related to the geometric shape, either abstractly, as in idealizations studied by geometers, or in triangular arrays such as Pascal's triangle or triangular matrices, or concretely in physical space.
For acute triangles, the feet of the altitudes all fall on the triangle's sides (not extended). In an obtuse triangle (one with an obtuse angle), the foot of the altitude to the obtuse-angled vertex falls in the interior of the opposite side, but the feet of the altitudes to the acute-angled vertices fall on the opposite extended side, exterior ...
When obtuse triangles are glued in this way, the resulting surface can be folded to form a disphenoid (by Alexandrov's uniqueness theorem) but one with acute triangle faces and with edges that in general do not lie along the edges of the given obtuse triangles. Two more types of tetrahedron generalize the disphenoid and have similar names.
A direct proof using classical geometry was developed by James Mercer in 1923. [2] This solution involves drawing one additional line, and then making repeated use of the fact that the internal angles of a triangle add up to 180° to prove that several triangles drawn within the large triangle are all isosceles.