Search results
Results From The WOW.Com Content Network
An electric field (sometimes called E-field [1]) is a physical field that surrounds electrically charged particles.In classical electromagnetism, the electric field of a single charge (or group of charges) describes their capacity to exert attractive or repulsive forces on another charged object.
As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field.
Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.
An electric field is produced when the charge is stationary with respect to an observer measuring the properties of the charge, and a magnetic field as well as an electric field are produced when the charge moves, creating an electric current with respect to this observer. Over time, it was realized that the electric and magnetic fields are ...
Interface conditions describe the behaviour of electromagnetic fields; electric field, electric displacement field, and the magnetic field at the interface of two materials. The differential forms of these equations require that there is always an open neighbourhood around the point to which they are applied, otherwise the vector fields and H ...
Poynting vector in a static field, where E is the electric field, H the magnetic field, and S the Poynting vector. The consideration of the Poynting vector in static fields shows the relativistic nature of the Maxwell equations and allows a better understanding of the magnetic component of the Lorentz force, q(v × B).
This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero. In electrodynamics, when time-varying fields are present, the electric field cannot be expressed only ...