Search results
Results From The WOW.Com Content Network
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
Euler's identity therefore states that the limit, as n approaches infinity, of (+) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,
This equation, stated by Euler in 1758, [2] is known as Euler's polyhedron formula. [3] It corresponds to the Euler characteristic of the sphere (i.e. χ = 2 {\displaystyle \ \chi =2\ } ), and applies identically to spherical polyhedra .
The method of Eratosthenes used to sieve out prime numbers is employed in this proof.. This sketch of a proof makes use of simple algebra only. This was the method by which Euler originally discovered the formula.
Q-series generalize Euler's function, which is closely related to the Dedekind eta function, and occurs in the study of modular forms. The modulus of the Euler function (see there for picture) shows the fractal modular group symmetry and occurs in the study of the interior of the Mandelbrot set.
Both sides of the Euler product formula converge for Re(s) > 1. The proof of Euler's identity uses only the formula for the geometric series and the fundamental theorem of arithmetic. Since the harmonic series, obtained when s = 1, diverges, Euler's formula (which becomes Π p p / p − 1 ) implies that there are infinitely many primes. [5]
Comment: The proof of Euler's four-square identity is by simple algebraic evaluation. Quaternions derive from the four-square identity, which can be written as the product of two inner products of 4-dimensional vectors, yielding again an inner product of 4-dimensional vectors: (a·a)(b·b) = (a×b)·(a×b).
Euler's proof is short [1] and depends on the fact that the sum of divisors function σ is multiplicative; that is, if a and b are any two relatively prime integers, then σ(ab) = σ(a)σ(b). For this formula to be valid, the sum of divisors of a number must include the number itself, not just the proper divisors.