Search results
Results From The WOW.Com Content Network
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
The Euclid–Euler theorem states that an even natural number is perfect if and only if it has the form 2 p−1 M p, where M p is a Mersenne prime. [1] The perfect number 6 comes from p = 2 in this way, as 2 2−1 M 2 = 2 × 3 = 6 , and the Mersenne prime 7 corresponds in the same way to the perfect number 28.
In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely, Precisely, Let p be an odd prime and a be an integer coprime to p .
Euler's theorem Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive.
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).
By the fundamental theorem of arithmetic, the partial product when expanded out gives a sum consisting of those terms n −s where n is a product of primes less than or equal to q. The inequality results from the fact that therefore only integers larger than q can fail to appear in this expanded out partial product.
Euler's theorem: If a and m are coprime, then a φ(m) ≡ 1 (mod m), where φ is Euler's totient function. A simple consequence of Fermat's little theorem is that if p is prime, then a −1 ≡ a p−2 (mod p) is the multiplicative inverse of 0 < a < p. More generally, from Euler's theorem, if a and m are coprime, then a −1 ≡ a φ(m)−1 ...
The first complete proof of this latter claim was published posthumously in 1873 by Carl Hierholzer. [1] This is known as Euler's Theorem: A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian ...