Search results
Results From The WOW.Com Content Network
Parametric representation is a ... the angle between curves on S, and the surface area all admit ... This perspective helps one calculate the angle between two curves ...
In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not necessarily, time, and the point describes a curve, called a parametric curve. In the case of two parameters, the point describes a surface, called a parametric surface.
Let φ 1 = 0, φ 2 = 2π; then the area of the black region (see diagram) is A 0 = a 2 π 2, which is half of the area of the circle K 0 with radius r(2π). The regions between neighboring curves (white, blue, yellow) have the same area A = 2a 2 π 2. Hence: The area between two arcs of the spiral after a full turn equals the area of the circle ...
Such a parametric equation completely determines the curve, without the need of any interpretation of t as time, and is thus called a parametric equation of the curve (this is sometimes abbreviated by saying that one has a parametric curve). One similarly gets the parametric equation of a surface by considering functions of two parameters t and u.
Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The line element ds may be expressed in terms of the coefficients of the first fundamental form as d s 2 = E d u 2 + 2 F d u d v + G d v 2 . {\displaystyle ds^{2}=E\,du^{2}+2F\,du\,dv+G\,dv^{2}\,.}
If the curve is described by the parametric functions x(t), y(t), with t ranging over some interval [a,b], and the axis of revolution is the y-axis, then the surface area A y is given by the integral = () + (), provided that x(t) is never negative between the endpoints a and b.
A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.
The peak is "well-sampled", so that less than 10% of the area or volume under the peak (area if a 1D Gaussian, volume if a 2D Gaussian) lies outside the measurement region. The width of the peak is much larger than the distance between sample locations (i.e. the detector pixels must be at least 5 times smaller than the Gaussian FWHM).