Ad
related to: strictly convex polygon calculator with steps
Search results
Results From The WOW.Com Content Network
In mathematics, a strictly convex space is a normed vector space (X, || ||) for which the closed unit ball is a strictly convex set. Put another way, a strictly convex space is one for which, given any two distinct points x and y on the unit sphere ∂ B (i.e. the boundary of the unit ball B of X ), the segment joining x and y meets ∂ B only ...
An example of a convex polygon: a regular pentagon. In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). [1]
Strictly convex may refer to: Strictly convex function, a function having the line between any two points above its graph; Strictly convex polygon, a polygon enclosing a strictly convex set of points; Strictly convex set, a set whose interior contains the line between any two points; Strictly convex space, a normed vector space for which the ...
Convex and strictly convex grid drawings of the same graph. In graph drawing, a convex drawing of a planar graph is a drawing that represents the vertices of the graph as points in the Euclidean plane and the edges as straight line segments, in such a way that all of the faces of the drawing (including the outer face) have a convex boundary.
In computational geometry, Chan's algorithm, [1] named after Timothy M. Chan, is an optimal output-sensitive algorithm to compute the convex hull of a set of points, in 2- or 3-dimensional space. The algorithm takes O ( n log h ) {\displaystyle O(n\log h)} time, where h {\displaystyle h} is the number of vertices of the output (the convex ...
The convex hull of a simple polygon is divided by the polygon into pieces, one of which is the polygon itself and the rest are pockets bounded by a piece of the polygon boundary and a single hull edge. Although many algorithms have been published for the problem of constructing the convex hull of a simple polygon, nearly half of them are ...
The Banach space (X, ǁ ⋅ ǁ) is a strictly convex space (i.e., the boundary of the unit ball B contains no line segments) if and only if δ(2) = 1, i.e., if only antipodal points (of the form x and y = −x) of the unit sphere can have distance equal to 2.
The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [ 3 ] [ 4 ] [ 5 ] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph ∪ {\displaystyle \cup } .