When.com Web Search

  1. Ad

    related to: differential equations with mathematica pdf answers youtube

Search results

  1. Results From The WOW.Com Content Network
  2. Mathieu function - Wikipedia

    en.wikipedia.org/wiki/Mathieu_function

    Mathieu's differential equations appear in a wide range of contexts in engineering, physics, and applied mathematics. Many of these applications fall into one of two general categories: 1) the analysis of partial differential equations in elliptic geometries, and 2) dynamical problems which involve forces that are periodic in either space or time.

  3. Semi-implicit Euler method - Wikipedia

    en.wikipedia.org/wiki/Semi-implicit_Euler_method

    In mathematics, the semi-implicit Euler method, also called symplectic Euler, semi-explicit Euler, Euler–Cromer, and Newton–Størmer–Verlet (NSV), is a modification of the Euler method for solving Hamilton's equations, a system of ordinary differential equations that arises in classical mechanics.

  4. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  5. Confluent hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Confluent_hypergeometric...

    Kummer's (confluent hypergeometric) function M(a, b, z), introduced by Kummer , is a solution to Kummer's differential equation. This is also known as the confluent hypergeometric function of the first kind.

  6. Annihilator method - Wikipedia

    en.wikipedia.org/wiki/Annihilator_method

    In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.

  7. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.

  8. Pseudo-spectral method - Wikipedia

    en.wikipedia.org/wiki/Pseudo-spectral_method

    In many practical partial differential equations, one has a term that involves derivatives (such as a kinetic energy contribution), and a multiplication with a function (for example, a potential). In the spectral method, the solution ψ {\displaystyle \psi } is expanded in a suitable set of basis functions, for example plane waves,

  9. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    A very large class of nonlinear equations can be solved analytically by using the Parker–Sochacki method. Since the Parker–Sochacki method involves an expansion of the original system of ordinary differential equations through auxiliary equations, it is not simply referred to as the power series method.