When.com Web Search

  1. Ads

    related to: sample standard deviation formula explained calculator with steps

Search results

  1. Results From The WOW.Com Content Network
  2. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    As explained above, while s 2 is an unbiased estimator for the population variance, s is still a biased estimator for the population standard deviation, though markedly less biased than the uncorrected sample standard deviation. This estimator is commonly used and generally known simply as the "sample standard deviation".

  3. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    Since the square root introduces bias, the terminology "uncorrected" and "corrected" is preferred for the standard deviation estimators: s n is the uncorrected sample standard deviation (i.e., without Bessel's correction) s is the corrected sample standard deviation (i.e., with Bessel's correction), which is less biased, but still biased

  4. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  5. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.

  6. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Most power and sample size calculations are heavily dependent on the standard deviation of the statistic of interest. If the estimate used is incorrect, the required sample size will also be wrong. One method to get an impression of the variation of the statistic is to use a small pilot sample and perform bootstrapping on it to get impression ...

  7. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    The use of the term n − 1 is called Bessel's correction, and it is also used in sample covariance and the sample standard deviation (the square root of variance). The square root is a concave function and thus introduces negative bias (by Jensen's inequality ), which depends on the distribution, and thus the corrected sample standard ...

  8. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be

  9. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    Saw et al extended Chebyshev's inequality to cases where the population mean and variance are not known and may not exist, but the sample mean and sample standard deviation from N samples are to be employed to bound the expected value of a new drawing from the same distribution. [30] The following simpler version of this inequality is given by ...