Search results
Results From The WOW.Com Content Network
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}
In category theory, an abstract branch of mathematics, distributive laws between monads are a way to express abstractly that two algebraic structures distribute one over the other. Suppose that ( S , μ S , η S ) {\displaystyle (S,\mu ^{S},\eta ^{S})} and ( T , μ T , η T ) {\displaystyle (T,\mu ^{T},\eta ^{T})} are two monads on a category C .
Galileo's law of odd numbers. A ramification of the difference of consecutive squares, Galileo's law of odd numbers states that the distance covered by an object falling without resistance in uniform gravity in successive equal time intervals is linearly proportional to the odd numbers. That is, if a body falling from rest covers a certain ...
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]
The following proposition says that for any set , the power set of , ordered by inclusion, is a bounded lattice, and hence together with the distributive and complement laws above, show that it is a Boolean algebra.
Distributivity, a property of binary operations that generalises the distributive law from elementary algebra; Distribution (number theory) Distribution problems, a common type of problems in combinatorics where the goal is to enumerate the number of possible distributions of m objects to n recipients, subject to various conditions; see ...
An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).
This page was last edited on 27 June 2011, at 22:00 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...