When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics.

  3. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    Here the twelve Maxwell's equations have been given, respecting the original notations used by Maxwell. The only difference is that the vectors have been denoted using bold typeface instead of the original Fraktur typeface. For comparison Maxwell's equations in their original quaternion form and their vector

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In fact, Maxwell's equations were crucial in the historical development of special relativity. However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8]

  5. Computational electromagnetics - Wikipedia

    en.wikipedia.org/wiki/Computational_electromagnetics

    Maxwell's equations (in partial differential form) are modified to central-difference equations, discretized, and implemented in software. The equations are solved in a cyclic manner: the electric field is solved at a given instant in time, then the magnetic field is solved at the next instant in time, and the process is repeated over and over ...

  6. Electromagnetic tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_tensor

    The inhomogeneous Maxwell equation leads to the continuity equation: =, = implying conservation of charge. Maxwell's laws above can be generalised to curved spacetime by simply replacing partial derivatives with covariant derivatives:

  7. On Physical Lines of Force - Wikipedia

    en.wikipedia.org/wiki/On_Physical_Lines_of_Force

    In it, Maxwell derived the equations of electromagnetism in conjunction with a "sea" of "molecular vortices" which he used to model Faraday's lines of force. Maxwell had studied and commented on the field of electricity and magnetism as early as 1855/56 when "On Faraday's Lines of Force" [ 2 ] was read to the Cambridge Philosophical Society .

  8. Maxwell's equations in curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations_in...

    These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields (or energy / matter in general) induce curvature in spacetime, [ 1 ] Maxwell's equations in flat ...

  9. Inhomogeneous electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Inhomogeneous...

    Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...