Search results
Results From The WOW.Com Content Network
In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...
Blue Brain Project, an attempt to create a synthetic brain by reverse-engineering the mammalian brain down to the molecular level. [1] Google Brain, a deep learning project part of Google X attempting to have intelligence similar or equal to human-level. [2] Human Brain Project, ten-year scientific research project, based on exascale ...
A more complicated example is given by recursive descent parsers, which can be naturally implemented by having one function for each production rule of a grammar, which then mutually recurse; this will in general be multiple recursion, as production rules generally combine multiple parts. This can also be done without mutual recursion, for ...
When heads occurs, tails can't occur, or p (heads and tails) = 0, so the outcomes are also mutually exclusive. Another example of events being collectively exhaustive and mutually exclusive at same time are, event "even" (2,4 or 6) and event "odd" (1,3 or 5) in a random experiment of rolling a six-sided die. These both events are mutually ...
Two nodes, i and i + 1, being removed simultaneously results in node i + 1 not being removed. In computer science, mutual exclusion is a property of concurrency control, which is instituted for the purpose of preventing race conditions.
It provides exclusive access to the locked data. Other schemes also provide shared access for reading data. Other widely implemented access modes are exclusive, intend-to-exclude and intend-to-upgrade. Another way to classify locks is by what happens when the lock strategy prevents the progress of a thread.
For example, if a typical coin is tossed and one assumes that it cannot land on its edge, then it can either land showing "heads" or "tails." Because these two outcomes are mutually exclusive (i.e. the coin cannot simultaneously show both heads and tails) and collectively exhaustive (i.e. there are no other possible outcomes not represented ...
Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.