Search results
Results From The WOW.Com Content Network
pressure drop across constriction (unit force per unit area) The above equations calculate the steady state mass flow rate for the pressure and temperature existing in the upstream pressure source. If the gas is being released from a closed high-pressure vessel, the above steady state equations may be used to approximate the initial mass flow rate.
In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.
A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s, e.g. water. [clarify]
Pressure drop (often abbreviated as "dP" or "ΔP") [1] is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through a conduit (such as a channel, pipe , or tube ).
To calculate the pressure drop in a given reactor, the following equation may be deduced: = + | |. This arrangement of the Ergun equation makes clear its close relationship to the simpler Kozeny-Carman equation, which describes laminar flow of fluids across packed beds via the first term on the right hand side.
The case of a converging-diverging nozzle allows a supersonic flow to occur, providing the receiver pressure is sufficiently low. This is shown in figure 3 assuming a constant reservoir pressure with a decreasing receiver pressure. If the receiver pressure is equal to the reservoir pressure, no flow occurs, represented by curve A.
The Kozeny–Carman equation (or Carman–Kozeny equation or Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing through a packed bed of solids. It is named after Josef Kozeny and Philip C. Carman.
Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q. We also know that pressure must be proportional to the length of the pipe between the two points L as the pressure drop per unit length is a constant.