Search results
Results From The WOW.Com Content Network
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
A simple but very useful consequence of L'Hopital's rule is that the derivative of a function cannot have a removable discontinuity. That is, suppose that f is continuous at a , and that f ′ ( x ) {\displaystyle f'(x)} exists for all x in some open interval containing a , except perhaps for x = a {\displaystyle x=a} .
An infinite discontinuity is the special case when either the left hand or right hand limit does not exist, specifically because it is infinite, and the other limit is either also infinite, or is some well defined finite number. In other words, the function has an infinite discontinuity when its graph has a vertical asymptote.
Singularity functions are a class of discontinuous functions that contain singularities, i.e., they are discontinuous at their singular points.Singularity functions have been heavily studied in the field of mathematics under the alternative names of generalized functions and distribution theory.
The corresponding non-deleted limit does depend on the value of f at p, if p is in the domain of f. Let f : S → R {\displaystyle f:S\to \mathbb {R} } be a real-valued function. The non-deleted limit of f , as x approaches p , is L if
A graph of a parabola with a removable singularity at x = 2 In complex analysis , a removable singularity of a holomorphic function is a point at which the function is undefined , but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.
Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]
The term removable discontinuity is sometimes broadened to include a removable singularity, in which the limits in both directions exist and are equal, while the function is undefined at the point This use is an abuse of terminology because continuity and discontinuity of a function are concepts defined only for points in the function's domain.