When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon ; the problem may be eliminated by choosing interpolation points at Chebyshev nodes .

  3. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  4. Remez algorithm - Wikipedia

    en.wikipedia.org/wiki/Remez_algorithm

    The Chebyshev nodes are a common choice for the initial approximation because of their role in the theory of polynomial interpolation. For the initialization of the optimization problem for function f by the Lagrange interpolant L n (f), it can be shown that this initial approximation is bounded by

  5. Bicubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Bicubic_interpolation

    Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling, when speed is not an issue.

  6. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  7. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function. Instead, Hermite interpolation computes a polynomial of degree less than n such that the polynomial and its first few derivatives have the same values at m (fewer than n) given points as the given function ...

  8. Lebesgue constant - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_constant

    In other words, the interpolation polynomial is at most a factor Λ n (T ) + 1 worse than the best possible approximation. This suggests that we look for a set of interpolation nodes with a small Lebesgue constant. The Lebesgue constant can be expressed in terms of the Lagrange basis polynomials:

  9. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    One can use Lagrange polynomial interpolation to find an expression for this polynomial, = ) () + () ...