Search results
Results From The WOW.Com Content Network
As time passed, train (also called bearing), the direction to the target, also became part of rangekeeping, but tradition kept the term alive. Rangekeeping is an excellent example of the application of analog computing to a real-world mathematical modeling problem.
A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more abstract nature, such as Hilbert's problems .
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
The Kissing Number Problem. A broad category of problems in math are called the Sphere Packing Problems. They range from pure math to practical applications, generally putting math terminology to ...
For example, the sphericity of the balls inside a ball bearing determines the quality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of a compactness measure of a shape.
A starting point for solving contact problems is to understand the effect of a "point-load" applied to an isotropic, homogeneous, and linear elastic half-plane, shown in the figure to the right. The problem may be either plane stress or plane strain. This is a boundary value problem of linear elasticity subject to the traction boundary conditions:
The seemingly "simple" elementary brain-teaser asks one student "Reasonableness: Marty ate 4/6 of his pizza and Luis ate 5/6 of his pizza. Marty ate more pizza than Luis.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.