Search results
Results From The WOW.Com Content Network
A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]
A double pendulum. The benefits of generalized coordinates become apparent with the analysis of a double pendulum. For the two masses m i (i = 1, 2), let r i = (x i, y i), i = 1, 2 define their two trajectories. These vectors satisfy the two constraint equations,
English: Six slow-motion videos of the same double pendulum (built with Lego), recorded with a high-speed camera. For each recording, the double pendulum was excited in the same manner. The videos are temporally aligned to show that the behaviour is similar in the beginning and considerably different later – which is due to the butterfly effect.
A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position.
Since the system is invariant under time reversal and translation, it is equivalent to say that the pendulum starts at the origin and is fired outwards: [1] r ( 0 ) = 0 {\displaystyle r(0)=0} The region close to the pivot is singular, since r {\displaystyle r} is close to zero and the equations of motion require dividing by r {\displaystyle r} .
Moreover, a double pendulum may exert motion without the restriction of only a two-dimensional (usually vertical) plane. In other words, the complex pendulum can move to anywhere within the sphere, which has the radius of the total length of the two pendulums. However, for a small angle, the double pendulum can act similarly to the simple ...
The equation describes the motion of a damped oscillator with a more complex potential than in simple harmonic motion (which corresponds to the case = =); in physical terms, it models, for example, an elastic pendulum whose spring's stiffness does not exactly obey Hooke's law.
Noteworthy examples include the three-body problem, the double pendulum, dynamical billiards, and the Fermi–Pasta–Ulam–Tsingou problem. Newton's laws can be applied to fluids by considering a fluid as composed of infinitesimal pieces, each exerting forces upon neighboring pieces.