Search results
Results From The WOW.Com Content Network
The physical mechanisms producing the above heat-release fluctuations are numerous. [1] [8] Nonetheless, they can be roughly divided into three groups: heat-release fluctuations due to mixture inhomogeneities; those due to hydrodynamic instabilities; and, those due to static combustion instabilities. To picture heat-release fluctuations due to ...
In spark-ignition internal combustion engines, knocking (also knock, detonation, spark knock, pinging or pinking) occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignited by the spark plug, but when one or more pockets of air/fuel mixture explode outside the envelope of the normal combustion front.
There is a rapid build-up (or "spike") in temperature due to the compound effect of rapidly burning (i.e., deflagrating) gases and the thermal cycle they produce. This is generally the best indication of a flashover. [2] The fire is in a ventilated compartment, so there is no shortage of oxygen in the room. [citation needed]
As in other forms of combustion, this exothermic reaction produces heat that can be transformed into work in a heat engine. HCCI combines characteristics of conventional gasoline engine and diesel engines. Gasoline engines combine homogeneous charge (HC) with spark ignition (SI), abbreviated as HCSI.
Heat Capacity: A fluid’s heat capacity indicates how much thermal energy it can transport and store, impacting the efficiency of the heat transfer process. [ 2 ] Thermal Conductivity and Thermal Diffusivity : These properties influence the rate at which heat is transferred through the fluid, affecting how quickly a system can respond to ...
When the flame moves backward it may also be called a "pop-back". A backfire can be caused either by ignition that happens with an exhaust valve open or unburnt fuel making its way into the hot exhaust system. A visible flame may momentarily shoot out of the exhaust pipe. A backfire is often a sign that the engine is improperly tuned.
Deflagrations are often used in engineering applications when the force of the expanding gas is used to move an object such as a projectile down a barrel, or a piston in an internal combustion engine. Deflagration systems and products can also be used in mining, demolition and stone quarrying via gas pressure blasting as a beneficial ...
The Fukushima Daiichi nuclear disaster in 2011 occurred due to a loss-of-coolant accident. The circuits that provided electrical power to the coolant pumps failed causing a loss-of-core-cooling that was critical for the removal of residual decay heat which is produced even after active reactors are shut down and nuclear fission has ceased.