When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q , or the falsity of Q ensures the falsity of P .) [ 1 ] Similarly, P is sufficient for Q , because P being true always implies that Q is true, but P not being ...

  3. List of rules of inference - Wikipedia

    en.wikipedia.org/wiki/List_of_rules_of_inference

    The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.

  4. Truth table - Wikipedia

    en.wikipedia.org/wiki/Truth_table

    A truth table has one column for each input variable (for example, A and B), and one final column showing all of the possible results of the logical operation that the table represents (for example, A XOR B). Each row of the truth table contains one possible configuration of the input variables (for instance, A=true, B=false), and the result of ...

  5. Material implication (rule of inference) - Wikipedia

    en.wikipedia.org/wiki/Material_implication_(rule...

    An example: we are given the conditional fact that if it is a bear, then it can swim. Then, all 4 possibilities in the truth table are compared to that fact. If it is a bear, then it can swim — T; If it is a bear, then it can not swim — F; If it is not a bear, then it can swim — T because it doesn’t contradict our initial fact.

  6. Propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Propositional_calculus

    A truth table is a semantic proof method used to determine the truth value of a propositional logic expression in every possible scenario. [92] By exhaustively listing the truth values of its constituent atoms, a truth table can show whether a proposition is true, false, tautological, or contradictory. [93] See § Semantic proof via truth tables.

  7. Method of analytic tableaux - Wikipedia

    en.wikipedia.org/wiki/Method_of_analytic_tableaux

    A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]

  8. Three-valued logic - Wikipedia

    en.wikipedia.org/wiki/Three-valued_logic

    It may be defined either by appending one of the two equivalent axioms (¬q → p) → (((p → q) → p) → p) or equivalently p∨(¬q)∨(p → q) to the axioms of intuitionistic logic, or by explicit truth tables for its operations. In particular, conjunction and disjunction are the same as for Kleene's and Łukasiewicz's logic, while the ...

  9. Boolean function - Wikipedia

    en.wikipedia.org/wiki/Boolean_function

    Balanced: if its truth table contains an equal number of zeros and ones. The Hamming weight of the function is the number of ones in the truth table. Bent: its derivatives are all balanced (the autocorrelation spectrum is zero) Correlation immune to mth order: if the output is uncorrelated with all (linear) combinations of at most m arguments